Министерство просвещения Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Российский государственный профессионально-педагогический университет» Институт инженерно-педагогического образования Кафедра информационных систем и технологий

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ **Б1.В.01.01 «ПРОЕКТИРОВАНИЕ БАЗ ДАННЫХ»**

Направление подготовки 09.03.03 Прикладная информатика

Профиль программы «Прикладная информатика (по элективным

модулям)»

Автор(ы): ст. преп. С.Ю. Ярина

канд. техн. наук, доцент В.В. Вьюхин

ст. преп. Н.С. Нарваткина

Одобрена на заседании кафедры информационных систем и технологий. Протокол от $\ll 20$ » января 2022 г. №5.

Рекомендована к использованию в образовательной деятельности научнометодической комиссией института ИПО РГППУ. Протокол от «26» января 2022 г. №6.

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Цель освоения дисциплины «Проектирование баз данных»: формирование умений в области проектирования и использования распределенных баз данных, взаимодействия их программных и аппаратных средств, знания принципов функционирования больших баз данных на основе клиент-серверных реляционных СУБД.

Задачи:

- изучение принципов построения баз данных;
- развитие практических умений по концептуальному, физическому и логическому проектированию баз данных;
- формирование умений использования инструментария для моделирования структуры баз данных

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина «Проектирование баз данных» относится к части, формируемой участниками образовательных отношений, учебного плана.

Для изучения учебной дисциплины необходимы знания, умения и владения, формируемые следующими дисциплинами:

- 1. Алгоритмические языки и системы программирования.
- 2. Прикладная математика и математическая логика.
- 3. Технологии работы с информацией.
- 4. Архитектура информационных систем.
- 5. Базы данных.
- 6. Операционные системы.

Перечень учебных дисциплин, для которых необходимы знания, умения и владения, формируемые данной учебной дисциплиной:

- 1. Большие данные и аналитика данных. Анализ и разработка алгоритмов.
- 2. Информационная безопасность.
- 3. Проектирование информационных систем.

3. РЕЗУЛЬТАТЫ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Дисциплина направлена на формирование следующих компетенций:

- УК-1 Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач;
- ПКС-5 Способен выполнять концептуальное, функциональное и логическое проектирование информационных систем;

- ПКС-10 Способен проводить отладку и оптимизацию аппаратно-программных средств, их перепрограммирование;
- ПКС-12 Способен к разработке технического задания на программную систему;
- ПКС-13 Способен к обеспечению процесса организации оценки соответствия требованиям существующих и (или) аналогичных программных систем.

В результате освоения дисциплины (модуля) обучающийся должен: Знать:

- 31. Основы теории баз данных;
- 32. Особенности реляционной модели и их влияние на процесс проектирования баз данных, нотации, используемые в ER-моделировании;
- 33. Основы реляционной алгебры; принципы проектирования баз данных, обеспечение непротиворечивости и целостности данных;
- 34. Средства проектирования структур баз данных, прямой и обратной генерации.

Уметь:

- У1. Проектировать реляционную базу данных, создавать физические и логические модели баз данных;
- У2. Использовать язык SQL для программного извлечения сведений из баз данных;
- У3. Использовать Саѕе-инструментарий для разработки логической, физической моделей данных, прямой и обратной генерации.

Владеть:

- B1. Приемами работы с современными Case-средствами проектирования баз данных;
 - В2. Приемами создания и настройки схему базы данных.

4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

4.1 Объем дисциплины и виды контактной и самостоятельной работы

Общая трудоёмкость дисциплины составляет 4 зач. ед. (144 час.), семестр изучения – 4, распределение по видам работ представлено в табл. № 1.

Таблица 1. Распределение трудоемкости дисциплины по видам работ

Вид работы	Форма обучения			
	очная			
	Семестр изучения			
	4 сем.			

	Кол-во часов
Общая трудоемкость дисциплины по	144
учебному плану	
Контактная работа, в том числе:	64
Лекции	16
Лабораторные работы	48
Самостоятельная работа студента	80
Промежуточная аттестация, в том	
числе:	
Экзамен	4 сем.

^{*}Распределение трудоемкости по видам контактной работы для заочной формы обучения (при наличии) корректируется в соответствии с учебным планом заочной формы обучения.

4.2 Содержание и тематическое планирование дисциплины

Таблица 2. Тематический план дисциплины

Наименование разделов и тем дисциплины (модуля)	Сем.	Всего, час.	Вид контактной работы, час.			
			Лекции	Практ. занятия	Лаб. работы	CPC
1. Этапы проектирования БД	4	22	4	-	6	12
2. Выбор темы проекта. Анализ	4	20	2	-	6	12
предметной области						
3. Анализ данных, источников и	4	20	2	-	6	12
потребителей данных						
4. Проектирование реляционной	4	22	4	-	6	12
модели						
5. Создание базы данных по модели	4	22	2	-	8	12
6. Анализ базы данных на выполнение	4	20	2	-	8	10
правил нормализации						
7. Подготовка тестового набора	4	18	-	-	8	10
запросов						

^{*}Распределение часов по разделам (темам) дисциплины для заочной формы обучения осуществляется научно-педагогическим работником, ведущим дисциплину.

4.3 Содержание разделов (тем) дисциплин

Раздел 1. Этапы проектирования БД

Жизненный цикл БД. Этапы проектирования БД. Результаты выполнения этапов. Особенности и технология проектирования РБД.

Раздел 2. Выбор темы проекта. Анализ предметной области

Изучение предметной области в соответствии с выбранным вариантом задания (темой проекта). Определение вероятных потребителей данных из проектируемой базы данных. Определение целей и задач базы данных. Определение вероятного набора запросов для базы данных.

Раздел 3. Анализ данных, источников и потребителей данных

Определение списка данных, необходимых для решения всех задач проекта. Определение списка потребителей данных и результатов. Определение требований к данным (точность, достоверность, частота обновления). Средства обеспечения целостности данных.

Раздел 4. Проектирование реляционной модели

Этапы проектирования РБД.

Плоская таблица. Подготовка плоской таблицы, включающей все необходимые поля базы данных, подлежащие регистрации. Понятие декомпозиции таблицы. Выполнение декомпозиции плоской таблицы в соответствии с проектом.

Определить список полей (или групп полей), используемых в качестве ключей. Проверить наличие ключей для обеспечения выполнения всех необходимых вариантов связывания таблиц.

Раздел 5. Создание базы данных по модели

Создание базы данных по теме проекта средствами SQL. Обратить особое внимание на использование средств обеспечения целостности данных, используемых в командах создания таблиц.

Раздел 6. Анализ базы данных на выполнение правил нормализации

Понятие нормализации отношений. Нормальные формы. Анализ повторяемости данных в таблицах модели. Корректировка структуры и состава полей таблиц в соответствии с требованиями принципов нормализации. Разработка примеров нормализации для 1НФ, 2НФ, 3НФ.

Раздел 7. Подготовка тестового набора запросов

Создание РБД выполнением одного файла запросов.

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Для изучения дисциплины используются различные образовательные технологии:

- 1. Традиционные образовательные технологии представлены комбинацией объяснительно-иллюстративного и репродуктивного методов обучения. Осуществляются с использованием информационных лекций, семинаров, практических занятий или лабораторных работ. При использовании данных методов деятельность учащегося направлена на получение теоретических знаний и формирования практических умений по дисциплине.
- 2. Для поддержки самостоятельной работы обучающихся использованы информационно-коммуникационные образовательные технологии, в частности, облачные технологии, электронная информационно-образовательная среда (ЭИОС), электронные средства обучения и электронно-библиотечные системы. При этом результативность организации самостоятельной работы обучающихся существенно повышается за счет доступности материалов, упорядоченности работ и возможности получения консультации преподавателя.
- 3. Кейс-технологии применяются как способ обучать решению практико-ориентированных неструктурированных образовательных научных или профессиональных проблем. Применяется как при чтении лекций, так и при проведении семинарских, практических и лабораторных занятий.
- 4. При реализации образовательной программы с применением дистанционных образовательных технологий и электронного обучения:
- состав видов контактной работы по дисциплине (модулю), при необходимости, может быть откорректирован в направлении снижения доли занятий лекционного типа и соответствующего увеличения доли консультаций (групповых или индивидуальных) или иных видов контактной работы;
- информационной основой проведения учебных занятий, а также организации самостоятельной работы обучающихся по дисциплине (модулю) являются представленные в электронном виде методические, оценочные и иные материалы, размещенные в электронной информационно-образовательной среде (ЭИОС) университета, в электронных библиотечных системах и открытых Интернет-ресурсах;
- взаимодействие обучающихся и педагогических работников осуществляется с применением ЭИОС университета и других информационно-коммуникационных технологий (видеоконференцсвязь, облачные технологии и сервисы, др.);
- соотношение контактной и самостоятельной работы по дисциплине (модулю) может быть изменено в сторону увеличения последней, в том числе самостоятельного изучения теоретического материала.

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ

6.1 Основная литература

1. Волк, В. К. Базы данных. Проектирование, программирование, управление и администрирование : учебник / В. К. Волк. — Санкт-Петербург : Лань, 2020. — 244 с. — Режим доступа : https://e.lanbook.com/book/126933.

- 2. Швецов, В. И. Базы данных : учебное пособие для СПО / В. И. Швецов. Саратов : Профобразование, 2019. 219 с. ISBN 978-5-4488-0357-4. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/86192.html
- 3. Тарасов, С. В. СУБД для программиста. Базы данных изнутри / С. В. Тарасов. Москва : СОЛОН-Пресс, 2018. 320 с. ISBN 978-2-7466-7383-0. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/90409.html
- 4. Астахов, В.П. Основы технологии электронной компонентной базы : практикум [Электронный ресурс] : учеб. пособие / В.П. Астахов, С.А. Леготин, К.А. Кузьмина. Электрон. дан. Москва : МИСИС, 2016. 53 с. Режим доступа: https://e.lanbook.com/book/93644. Загл. с экрана.

6.2 Дополнительная литература

- 1. Хорин И. А. Технологии электронной компонентной базы : учебное пособие. Саратов : Ай Пи Эр Медиа, 2018. 278 с. Режим доступа: http://www.iprbookshop.ru/73345.
- 2. Николаев Е. И. Базы данных в высокопроизводительных информационных системах : учебное пособие. Ставрополь : Северо-Кавказский федеральный университет, 2016. 163 с. Режим доступа: http://www.iprbookshop.ru/69375.
- 3. Кузнецов С.Д. Введение в реляционные базы данных [Электронный ресурс] / С.Д. Кузнецов. 2-е изд. Электрон. текстовые данные. М. : Интернет-Университет Информационных Технологий (ИНТУИТ), 2016. 247 с. 5-9556-00028-0. Режим доступа: http://www.iprbookshop.ru/73671.html.— ЭБС «IPRbooks»
- 4. Братченко Н. Ю. Распределенные базы данных : учебное пособие. Ставрополь : Северо-Кавказский федеральный университет, 2015. 130 с. Режим доступа: http://www.iprbookshop.ru/63130.
- 5. Советов, Б. Я. Базы данных : учебник для прикладного бакалавриата [Гриф УМО] / Б. Я. Советов, В. В. Цехановский, В. Д. Чертовской ; С.-Петерб. гос. электротех. ун-т "ЛЭТИ" им. В. И. Ульянова (Ленина). 2-е изд. Москва : Юрайт, 2015. 462 с.

6.3 Программное обеспечение и Интернет-ресурсы

Интернет-ресурсы:

1.. Режим доступа:

Программное обеспечение:

- 1. Операционная система Windows.
- 2. Офисная система Office Professional Plus.
- 3. CASE-средства проектирование баз данных DB designer.

4. CASE-средства проектирование баз данных SQL Server Management Studio.

Информационные системы и платформы:

- 1. Система дистанционного обучения «Moodle».
- 2. Информационная система «Таймлайн».
- 3. Платформа для организации и проведения вебинаров «Mirapolis Virtual Room».

7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Перечень материально-технического обеспечения для реализации образовательного процесса по дисциплине:

- 1. Учебная аудитория для проведения занятий лекционного типа.
- 2. Учебная аудитория для проведения занятий семинарского (практического) типа, проведения групповых и индивидуальных консультаций, проведения текущего контроля и промежуточной аттестации.
 - 3. Компьютерный класс.
 - 4. Помещения для самостоятельной работы.

